Goals of Geospatial Statistics
Workshop and Report

(1) Introduction to spatial and temporal modeling
challenges and statistics for spatial data.

(2) Review techniques to assist with spatial and temporal
modeling challenges for the EERE modeling teams.

(3) lllustrate examples using common EERE data sets.
(4) Review software for spatial analysis.

(5) Produce a (post workshop) paper with recommended
approaches and examples.
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» Why spatial and spatio-temporal statistics?

» How Exploratory Spatial Data Analysis (ESDA) can help
Interpret spatial data.

» How to use observed data to estimate an unknown
Process.

» Developing models for point-referenced and areal data.

» How to work with misaligned data and multiple spatial
scales.

» Review of Software Options.
» Questions and Discussion.



(1) Introduction to spatial and temporal modeling|.

challenges and statistics for spatial data.

Geospatial Statistics and

Issues in Energy Modeling

Gardar Johannesson and Jeffrey Stewart
Lawrence Livermore National Laboratory
May 10-11, 2005




Common Challenges Working With Spatial @

and Temporal Data for EERE Modelers

L

Aggregating and disaggregating spatial and temporal data between
NERC regions, census divisions, numerous utility and county
districts.

» [ntegrating simulated or areal data with sparse point data.
» |Incomplete data sets.
» Poor data quality.
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Physical Models Still Need Improvements @

Before Relying Solely On Their Results

Actual vs Modeled Terrain Elevations

(Altamont, CA)
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Terrain complexity and other unknown factors contribute

to the model errors.

Point data, local physical and regression models can
be used to reduce the reliance on single data sources.




Terrain Calibration of Forecast Error Using

COAMPS Model and Measurement Station Data

Weekly Mean Abselute Error in Wind Speed (m/s) for 11 Stations Weekly Mean Abselute Error in Wind Divection for 11 Stations
(2) July 1 -7, 2004 ' ' '
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“Data that are close together in space and time are @

often more alike than those that are far apart”.Cressie

Data representing both physical and socio-economic phenomena tend

to demonstrate spatial correlation. The precipitation maps below shows a
generally smooth transition The electric demand map shows clustering of
high and low energy demand. It indirectly shows the tendency of
populations to cluster (see coastal regions).
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Using Statistical Means Solely Can

n

Lead to Misrepresentation

The Mean offers some initial insight into the population or event of concern.
Adding a distribution over the population or event improves the ability to
estimate or predict. The mean for each one of these graphs is 7 m/s.
However, the shape (PDF) of each graph will produce very different wind
power estimates. The median wind speeds m/s (6.60, 6.90 and 2.30) begin
to give a better indication of the frequency economical winds are available.
Regression models using topographical features may allow modelers to
estimate improved statistics on a site.
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Some wind turbines do not operate below 3-5m/s or above 25m/s.




Averaging Behavior Over Portions of the Day [.%

for Each Season Loses Crucial Information

Demand and wind generation (peak demand scaled to 1kW)
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Averages lose the fact that wind energy comes in bursts, which affect capacities of other
generators

Averages over long periods of the day: don’t recognize hourly fluctuations

Example: averaging loses the fact that there really was no wind generation in the hours
that the system demand was at peak at this site.

Aggregation and averaging is more likely to lead to systematic errors in the penetration
of intermittents and changes to the balance of the system



Input Data:Key Take Away

» Data provided by non energy modelers often needs to be
modified to appropriately represent the analysis of
Interest.

» Using data at inappropriate spatial and temporal
resolution can lead valid energy models to erroneous
results.

» |ntroducing spatial statistics for data analysis is a
convenient and proven way to conduct analysis that can
be validated.
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General Spatial Model

Statistics relies on various types of stochastic models.
The data may be continuous or discrete, spatial
aggregations or observations at points in space.The
stochastic model is used to summarize existing data
or to predict unobserved data. cressie

The General Spatial Model: {Z(S) o= D} where:
S’ = Spatial location belonging to the set [)
[) = Random set

Note: A spatial model may not explain why an event occurs,
unlike the more common definition of a model.
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What Are We Looking For?

The data we get is not necessarily
what we want...

» We might observe point-
referenced data, but want a %
fine-resolution map
(interpolation/extrapolation)

» We might observe areal data
with missing data for some of
the units, but want complete
data (prediction/imputation)

» We might observe areal data
at a given set of areal units,
but need them at a different set
of units (misaligned data)
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Reason to Use Statistics for

Spatial Data

*Make a prediction of a value at a o
location that was not measured. Need to
How ? predict
Obtain data that will allow us to un-
make a probabilistic estimate of the observed
value we want. locations
*Develop a model of the underlying
process and calibrate it from our
data.
Calibrate the model (e.g make a
probabilistic estimate of the Need to
Ercibability distritzjutlion g\ﬁr tthe error predict
etween our model and the true missing
data).
county
data

Our model is basically an estimate of the expected value at any point and is a function of a) the location in space and b) any other
relevant “external” data. Make an estimate of the error between the model and the true value. Base this estimate on information from
known measurements taken near the location. Make a model of the statistical correlation between points that are near each other.



Data Types

» Basic spatial data-types:

» Data associated to point locations (point-referenced data) which
can come from individual measurement stations (met towers),
individual building energy use etc.

» Data associated to areal units/cells/zones (areal data),examples
are summary statistics, simulated data representing statistics on
a region, grid, etc.
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Point-Referenced Data

Each observation is associated
with a point location:

Let Z(s,), Z(s,), ..., Z(s,)
denote n observations
associated with the spatial
point-locations s, s,, ..., s,

Example: Observed average
wind-speed in a given time
period at given sites

The data can be observed at
spatially irregular sites or on a
regular grid

‘ Low

Observed data at 92 spatially
irregular sites
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Areal Data

Each observation is associated
with an areal unit (cell, zone)

L

Let Z(D,), Z(D,), ..., Z(D,)
denote n observations
associated with the areal
units D, D,, ..., D,

Two types of areal data:

> Areal aggregation. The
observed data is generated by
an aggregation process (e.g.,
counties’ average wind speed)

» Areal explicit. The data is

explicjt to the areal units (e.g., County-aggregated data: some
counties’ budget) counties have missing data

////

e
I

‘ Low
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What Are We Looking For?

The data we get is not necessarily
what we want...

» We might observe point-
referenced data, but want a %

fine-resolution map

Need to
predict
un-
observed
locations

(interpolation/extrapolation)

» We might observe areal data
with missing data for some of
the units, but want complete

data (prediction/imputation)

» We might observe areal data
at a given set of areal units,
but need them at a different set
of units (misaligned data)

Need to
predict
missing
county
data
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Defining The Unknown Process

» The Unknown (Target) Process is the data we are trying
to estimate to explain a process, event, phenomena. We
may not need to understand “why” it happened or is
expected to happen, but we do model when it should
have happened or may happen.

18



Make a formal separation between
what is observed and what is sought
after

» Point Data:
Zs)=Y(s) T &,;5 i
» Areal Data:
ZD)=YD)+e¢,;;j=1 ..,n

|
[E—
e
<
S

a

Where we denote by:
Y = the true, unknown
process, the Y-process
¢ = the data-error (if any)

The data-error might be zero for some
data

19



Multiple Data Types

il
The same Y-process can often be the ig*g“o o Fos ‘IEEF"-.E
generating mechanism for both point- s%a] Bls "":".IE.IH‘I
data and areal-data: (23" 5 I.E"#EE#EU'
» Zs)=Y(s) + &, U el 17 lﬂﬁi&w ™
$ Low § Low
+ AD) = Y(D) + &, where Point Data Areal Data
Y(D)=avg{ ¥(s):sin D} NS
Hence, the value of the Y-process in e T R |
areal unit D is just given by the average HH E * P mmeE
(integration) of Y over D e s=le RN,
: Target Process
There are other cases where the Y- J? : HER j__;:i
process is only well defined on a given S 111,! e i High
set of areal units, and aggregation of S aaae aan Y
those units Ul §...
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(2) Review techniques to assist with spatial modeling l_ |

challenges for the EERE modeling teams.

Geospatial Statistics and

Issues in Energy Modeling

Gardar Johannesson and Jeffrey Stewart
Lawrence Livermore National Laboratory
May 10-11, 2005
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Defining Exploratory Spatial Data Analysis-

» ESDA should always be the first step in any data
analysis

ESDA is mostly graphics-based approach to explore the
basic characteristics of the observed data

» |[n ESDA, we particularly look for approaches to explore:

> The possibility of large-scale spatial trend in the data and how
that trend can be captured/model.

> The (marginal) variation in the data; the mean, the spread of the
data, etc.

> Possible correlation to external readily-available data and how
that data can be used to help in explaining (and reduce) the
variation in the observed data.

» The spatial correlation in the data and how it varies with
distance.

L
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Observing Spatial Trend

2 Visually easy to see a
large scale-trends in
areal data

» There are numerous
graphical ways to
visualize potential
trend in point-
referenced data
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Detrending Point-Data Reduces the
Large Scale Variation

The large-scale trend is subtracted from the point data, yielding
detrended point-data that has smaller variation

Original point-referenced data
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Using External Explanatory Data

O
There might be available  _ L
external data that is : S -
correlated with the observed 2 L
data, and therefore useful ¢ :
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Additional Analysis Using Point-Data

Residuals

The contribution of the external data is subtracted from the detrended
point-data, yielding point-data residuals that have even smaller

variation
Detrended point-referenced data Point-referenced residuals
° 0“2\/‘_/88/. = UMJ
0 0
2l ige I 2l g T
o o 0 0
O 08% O i 0@ O 08% O o o®
o O o @ o O o 0O
00O 8 O. oQ 00 ) O.
0 0
L(S)oooooooo L‘)oooooooo
& - &
% OO ® o) % OO S0}
& & L :
o 00©
(@) O
M
A =

Note smaller variation



L

Variation Reduction

1 Original Point-Data 5 Original Areal-Data

25

Variation in data can
be explored through
histograms

Aggregation reduces
the variation (see

histogram 1 and 2 of
original point-data vs. =-
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the variation (see 1
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Spatial Association (Point-Data)

Point-Referenced Data: The goal -+ OOO ------------------- o---@---Q ------------------
is to gain information about the 3 O O
spatial association in point- 5 =
referenced data = "1 ° O Empirical semivariogram
. - - - ° based on observed
The empirical semivariogram: point-data
Provides information about the ° 1 | l l | l .
spatial association in point- oo ) t15“ 2000 0%
. Istance
referenced data as a function of 5
distance between points S o—--6---@---o--@--Q--O---Q---o---Q ----------- ol
O
o g ] o
n 1 ( )2 g o
AORE eI ACHEVACHI NS &
2 | N( ) | (5:,8;) g o] Empirical semivariogram
in N (h) o | e based on point-data
Where £ is a given distance and N(h) <. residuals
is the set of points (approximately) o 50 100 15 200 250 30
separated by 4 distance

Spatial Correlation is strongest near zero
and does not exist above dashed line 29



Spatial Association (Areal-Data)

One can use the empirical
semivariogram to explore the spatial
association in areal data. That
requires a distance measure between
areal units, which can be taken as the
distance between the units’ centroids

semivariance

semivariance

0.2 03 04

0.0 0.1

. . . O
| Empirical semivariogram 0
based on observed =
areal-data 00
5y O
0O
O
O

O
| [ | I [ I [
0 50 100 150 200 250 30

distance
O

__________________________________________ 0000 O o

O

]
Empirical semivariogram
based on areal-data
residuals
[ [ [ [ [ [ [
0 50 100 150 200 250 30
distance
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Spatial Proximity of Areal Units

An alternative to use areal units’ | The proximity matrix = (w,):
centroids to define a distance-

measure between units is to 1 if D ~ D].
define the spatial proximity W, = :
through a neighbor 0 otherwise
relationship D,~D;: D;and D, are neighbors

- . - L]
L] * L] *
B ° 5 B ° 5
L ] L ]
. . . . . i ° . . . . . i -
. ° . « o * . o . « o *
0 . 0 O . o
. . . . . . . ™ .
. . . . . . .
.

Counties that share First order neighbors of Second qrder neighbors
borders are neighbors a given county of a given county

31



Spatial Association via Proximity

The goal is to measure (empirically) the spatial association in areal data

Geary’s C provides B
information about the spatial Z Wi (Z(Di) Z(DJ))z/Z Wi
association in areal data by C=- — &
using the spatial proximity Z (Z(Dl.) — Z) /(n —1)
matrix W i

Geary’s C has similar interpretation as the semivariogram

- ._ %--
The graph to the left shows Geary’s C computed @ /
for 1st, 2nd and 3™ order spatial neighbors using lo
areal-data residuals N =
There is very little spatial association outside 1st
order neighbors st — o

neighbors distance
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ESDA: Geary’s C and Moran’s | g

Geary’s C and Moran’s |
statistics provides
information about the
spatial associating in data
defined on areal units

//
-1

//”I

ZWg(Z(Di)_Z(DJ))z/ZW
C = __ ij
2(22)-Z fn=1

> wy(Z(D)-Z)Z(D))-Z) /Zw

[="

Z(Z(Dl.)—f)z/n

Where recall that W= (w;) is the proximity
matrix. Under no spatlal association, the

expected value of Cand 7/is 1 and -1/(n-1),

respectively. Low value for C and a value
of I distant from -1/(n-1) hint at spatial
association
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ESDA: Geary’s C and Moran’s | g

Example of Geary’s C and Moran’s |
applied to areal county data (from
previous slide) for 1st, 24 and 3
order neighbors

Cc
00 02 04 06 08 1.0

Geary’s C for
detrended areal data

The two provide the same ! l |

: . . 2 3
information; 34 order neighbors show

little or no association

neighborhood distance

Moran’s | for
detrended areal data

It is possible to perform a formal test
of significance for both Geary’s and
Moran’s association statistics, but
they are mostly used as exploratory
tools

0.0 01 02 03 04 05
|

-0.1

neighborhood distance
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Spatial Modeling Recap

The goal is to construct a model that relates the observed spatial data to
the unknown process of interest and can be used to predict the process
at any site/area of interest, along with an uncertainty measure
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Models for Point-Referenced Data

“Classical” Geostatistical Model

» The Data Model:
Z(s;)=Y(s)+ &s); i=1,...,n
where:
Y(s)) = unknown process
&s;) = observation errors
» The Process Model:
Y(s;) = p(s;) + fx) + As))
where:
w(s;)) = large-scale trend
fix)) = external predictor
As;) = small-scale variation

It then remains to specify the various
terms of the model

LS

The error process &(s)):
Assumed independent with zero
mean and variance c?

The large-scale trend (s)):
Assumed deterministic, for
example (s,) = a + b lat(s))

The external predictor f{x,):

A function of external data x;
The small-scale process Js,):

Assumed to be zero mean and
spatially correlated process:

Cov(As,), &s)) = 7 K(|s;— )
where 72 is the variance and K
Is a distance based correlation
function

36



Modeling the Spatial Correlation

* The distance-based correlation ] e eeherce,
function K(Js; - s[) of the small- £ ~ st
scale process needs to be 5 o
specified i

» Some options are: 3 2

Exponential:  exp(-d/¢) N ———
Gaussian: exp(-(d /1)) ==
where d is distance and ¢is a R
range parameter, controlling the i} stance
extend of the spatial correlation - e
> The variogram: It is the case that _ = b
Var(ds) - As)) = 83
20 2(1-K(s;—s) ] £ 324
Define the semivariogram as: * o — opperica
Vs s = 7 (1 - K(ls; ) NP -y
0 50 100 150 200 250 300

distance
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Examples of Spatial Variation

] c 3 - '.J. '-Ij&_--
Example of 9 spatially ~ © , 1 e -
. e L - .
correlated Gaussian T - i -
random fields, with E ' _* g 'y F
each row showing three o g "

fields generated with el : . . Pral - -
the same spatial g
correlation structure

An exponential spatial
correlation structured
was used

Medium range
o
En

Long range
s
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3

Example of Spatial Point Prediction

Consider the Model:

" (own

Z(s;) = Y(s) + &(s,)

Y(s;) = [181 + 182 lat)] /@
P / External ]

+ 5(51')
<« | Spatial

where the unknown parameters
are the f's and the
variance/covariance parameters
associated with &(s;) and &(s,)

Parameter Estimation:

Maximum likelihood (assuming
Gaussian distribution of stochastic
error terms)

Prediction:

Given estimates of unknown
parameters, the Y-process
can be predicted at any
spatial location.

The distribution of the
predicted process is
Gaussian

Optimal prediction is given by
the mean value of the
predictive distribution. The
standard deviation of the
predictive distribution shows
the uncertainty
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Spatial Point Prediction (con’t)

Mean Prediction Standard Deviation Residuals
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Models for Areal Data

|ldentical Setup as for Point Data

» The Data Model:
Z(D)=Y(D)+ &D,))
where:
Y(D,) = unknown process
&D,) = observation errors
» The Process Model:
Y(D)) = (D)) + D) + &D))
where:
u(D,) = large-scale trend
A(D, = external predictor
AD;) = small-scale variation

The difference is in the modeling of
the spatially-correlated small-scale
variation &D,)

The Small-Scale Process JD,):

§

Spatial correlation is induced
through the proximity matrix

W= (wl.j)
CAR: The conditional
autoregressive model:

2
T

5,16, ~N| 25w, —

Wz‘+ J Wz‘+

SAR: The simultaneous
autoregressive model:

0, =p2wl.j5j +u,
j

where u, ~ N(0,t%)

For “grid-like” areal-units, one can
use point-referenced spatial
correlation models

41



Examples of Spatial Variation

Example of 9 spatially
(Gaussian) correlated
areal data generated
using the SAR model
with 3 different spatial
correlation ranges.

Short

Medium

A nearest-neighbor
proximity matrix is used

Long
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Example of Areal Unit Prediction

Mean Prediction Standard Deviation Residuals
/
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[

Using Both Point and Areal Data

It is possible to take simultaneously
advantage of point-referenced data
and areal data when both carry
information about the same process,
although at different spatial scales

Need to model the target process at
a point-scale (or at a fine resolution)

The Data Model:
Z(s;) = Y(s)) + &(s))
Z(D)=Y(D)+ &aD,))
where:
Y(s) = unknown process
Y(D) = avg{Y(s) : s in D}
&s;) = point-data error
&D,) = areal-data error
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Using Spatial Prediction Maps

The goal is to use the results of the spatial prediction to answer
questions of interest; the plug-in approach vs. the stochastic approach

» Example of usage: Want to
estimate the average/max/min
of the Y-process in a give sub-
region

» Recall that the result of the
spatial prediction is a
distribution of the Y-process

» The plug-in approach: Use
the mean predicted value of
the process and compute the
quantities of interest; that is,
plug the optimal map into the
“formula” for the answer

]

Uncertainty associated with
the plug-in approach: Can use
the predicted standard
deviation to estimate
uncertainty in the output

The stochastic approach:
Generate realizations of the Y-
process from the predictive
distribution (i.e., many maps)
and compute the quantities of
interest for each map. This
yields the distribution of the
quantities of interest
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ESDA:Key Take Away Message

» Using ESDA can make better use of Areal and Point
data sets than other standard data analysis methods
such as Classical Statistics.

» ESDA allows you to build data and prediction models
that will provided defensible techniques to data
manipulation.
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Misaligned Data and Processes

What to do when data is reported at one set of areal units but we need
to make inference at a different set of areal units (different scale)

For example: data reported on the county-level (with uncertainty and/or
missing data for some counties), but we are interested in the unknown
process on a regular coarse or fine resolution grid
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Resampling via GIS Software

A popular approach in GIS software is to
‘resample” the data to the new areal-units H

This is accomplished by assuming that the
underlying process is uniformly distributed
within each original areal unit and aSae
reallocation (resampling) is then carried . ,Eﬁi
out in proportion to overlapping area

= .
i T

Problems occur if there is
» missing data, or

| » the underlying process is not believed
iﬁ' to be (approximately) uniform within
the original areal units
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Example of Resampling

An example of
resampling (complete)
county-data to a course
and fine resolution grids
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Resampling

The results for the
fine-resolution grid
are not realistic
due to how refined
it is compare to the
original county
data

A
, High
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Model-Based “Resampling” Approac

The goal is to create a more realistic “resampling” method

The approach taken is to model
the unknown Y-process either at:

(1) the target areal units (i.e., fine-
resolution grid) or at

(2) the set of areal units formed
by the union of the areal units of
the data and the target areal units

If the target areal units are at a
much finer spatial scale than the
data areal units, there is little
difference between the two
approaches

The data-model becomes:

Z(D))=> a;Y(B,)+&(D,)

Where q;; is th]e area proportion of
the data areal unit D, that is within
the fine-resolution cell B,

The fine-resolution Y-process is
then modeled as an areal process
(as introduced previously)
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Example of Model-Based Resampling

Given incomplete county-data, the Y- The true P #ﬂﬁ
process is predicted at a fine-resolution Y-process B ety
grid and the associated standard TINUS e i
deviations mapped. predicted :
Comparison to the true Y-process shows

favorable results
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Spatial Representation

What Resolution Should | Use?

We are able to work with multiple data at different spatial scales and
predict the unknown Y-process at altogether different spatial scale.

Question: What resolution should | use when predicting the Y-process?

P ]
2

...It depends on what the prediction map is going to be used for...

> Aggregation reduces the variation in the underlying process; shrinks the
process to the local average.

For some applications this might be problematic (e.g., finding the spread
of the process), but not so for other applications (e.g., finding the mean).

» ...It depends on the (natural) spatial variation in the process...

If the process varies slowly with spatial location, due to long-range spatial
correlation, then a coarser-resolution representation might be sufficient.
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Spatial Correlation and Resolutio

range spatially
correlated
process (top)

Each row of four & -

maps shows the £ - ¥

aggregation of a @

(Gaussian) E

randomly £

generated spatial 2

processes 8

Take note of how 2 - =

the aggregation _? .

has lesser impact =

on the long-range Q

spatially % "

correlated ’S

process (bottom) O \ :

than on the short- @ B ! o
&

Aggregation [fine to the left, coarse to the right]
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The Impact on Variation

Aggregation
reduces the
variation in the
process

Aggregation

has lesser
impact on the
mean (average)
tendency of the
process

Spatial Correlation [high at bottom, low at top]
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Variation, Correlation, and Resolution

T
Question: How does the change in | \‘*‘H\H
variation relate to the spatial i
correlation and resolution?

Standard deviation
0.8 1.0
|

04
|—/

0.6

» The variation, as represented by
the standard deviation, decreases
with increasing pixel-width for all
ranges of spatial correlation, but 005 010 015 020 025
more so for processes with low Fesolutlan [phelwickh)
spatial correlation (see top graph),

» The variation, as represented by
the standard deviation, decreases
with the pixel-with to correlation-
range ratio (bottom).

» Given information about the spatial
correlation, a resolution (pixel
width) can be chosen z

1.2

L Low correlation
M Medium correlation
H High correlation
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(3) lllustrate examples using common

EERE data sets.

Geospatial Statistics and

Issues in Energy Modeling

Gardar Johannesson and Jeffrey Stewart
Lawrence Livermore National Laboratory
May 10-11, 2005
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National Renewable Energy Laboratory Data Sets

Annual Average Wind Power
Density Data For California



L

The data covers California P ign

and shows an estimate of the
annual average wind power
density at 50m height as
provided by TrueWind
Solutions

The data is reported as
200x200 meters pixel
averages; areal-data

The question is: For geo-
processing, is it necessary to
work at the 200m resolution
or can one work with (more
manageable) courser-
resolution maps?

Annual average wind
power density at 50m
height in California
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Study Area C

A small sub-region was selected for further study and the original 200m
resolution data was aggregated to coarser resolutions




ESDA: Variation

Use histograms to visualize the (marginal) variation in the wind power
density at each resolution and look for shrinking variation with resolution
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ESDA: Spatial Correlation

The semivariogram can be used to summarize the spatial correlation
pattern in the data at each resolution

The spatial
correlation is
seen to level off
around 20km.
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ESDA: Conclusion

The goal was to determine the coarsest resolution that one could
work with and still have a good representation of variation in the
wind power density, in particular the shape and extend of the right-
tail of the distribution.

To analyze the impact that resolution has on variation, the 200m
resolution data was aggregated in five steps down to 6,400m
resolution. A histogram of the aggregated wind power densities
shows a gradual shrinking of the variation with coarser resolution,
particularly when exceeding 3,200m resolution.

Instead of aggregating to coarser resolutions, it is possible to use
the semivariogram, derived from the original 200m resolution data,
to infer about the amount of spatial correlation in the data. The
spatial-correlation range provides information about the impact that
aggregation at different resolutions has on the variation in the data.
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